Submit your essay to the AI-Cybersecurity Essay Prize Competition by January 2, 2025.
The AI-Cybersecurity Essay Prize Competition

War in space is not what you think

As domains of warfare, ground, sea, and air have far more in common with each other than they do with space
Main Top Image
Image created with the assistance of Midjourney

The motion of objects in orbit is counterintuitive to brains that evolved on Earth. Hollywood space battles typically resemble World War Two dogfights or 19th-century naval warfare, but real spacecraft manoeuvre in a manner utterly unlike aircraft or ships.

For a start, a satellite’s speed and altitude are inextricably linked, so it cannot ‘speed up’ without getting closer to Earth, nor ‘slow down’ without moving further away. The most distant satellites orbit at a relatively unhurried 3 kilometres per second, while their atmosphere-hugging low-orbit counterparts gallop along at almost three times that. All travel faster than a speeding bullet.

The enormous distances and speeds at which satellites move make pinpointing a satellite’s position and predicting its movement a technical feat even for an operator whose own satellite ‘wants to be found’. Tracking a satellite is a full-time job that requires constantly piecing together ‘sightings’ from cooperative partners around the globe.

The space domain also differs radically in scale. The lowest-altitude satellites orbit within the thin upper reaches of the atmosphere (where air resistance eventually slows them enough that they plummet), while the most distant orbit in widespread use is 36,000 kilometres from Earth—more than twice as far as Australia is from London by air. By comparison, the highest-flying jet aircraft record approached 38 kilometres, and the average depth of the world’s oceans is less than 4 kilometres. 

All this makes satellites awkward targets. A missile launched from the ground would take hours to reach a satellite in a high orbit, while those nearer Earth are faster and usually smaller.

In other ways, however, the physics of spaceflight make satellites vulnerable. Objects in orbit are not ‘weightless’. Rather they are perpetually falling, albeit falling ‘around’ the Earth because they are moving so fast horizontally. In this state of free-fall, changing direction isn’t much easier than it is for a person falling from a building. That makes satellites, in a sense, immobile: once they are installed on a given orbital ‘track’, they cannot generally leave it. Most do carry small amounts of propellant with which they can gradually nudge themselves into different orbits over time, but this is slow and their range of motion is heavily constrained—think of steering a speedboat with a canoe paddle—and because satellites must be light enough to launch, they can’t carry much fuel. This means that if an adversary does somehow manage to pinpoint a satellite, that satellite cannot run away.

Weapons in space

Space may in principle be ‘the ultimate high ground’ allowing domination of Earth, but realising this potential in practice is far beyond the reach of current or near-future technology. Physics dictate that armed satellites in orbits low enough to strike ballistic missiles or terrestrial targets necessarily move at high speed, so in order to ensure continuous coverage of a given location a large number of them would be needed. Global coverage would be a national undertaking on the scale of the Great Wall of China, yet without global coverage there would be little advantage over much cheaper terrestrial missile defence systems. The technical barriers and astronomical cost will be insurmountable for the foreseeable future, but the idea is so appealing that it will likely never die.

Deploying space-based weapons for use against other satellites is perhaps more feasible. All objects in orbit move at bullet-like speed and carry so much kinetic energy that collisions between them are typically explosive. That means any orbiting object that can be steered is a potential space-to-space missile.

It is impossible for an aggressive spacecraft to sneak up on a satellite—empty space by definition affords no cover—but it is also impossible for a country to determine the nature of any spacecraft that approaches one of its satellites, since most are far too distant for visual imagery. Radar can at best reveal a spacecraft’s approximate location, size and movement, but not who it belongs to, what it’s carrying, or even where it came from unless it was tracked continuously from the moment it was launched. That’s why the world’s current space defence efforts focus largely for now not on putting marines on the Moon but simply on ‘space situational awareness’—figuring out what’s up there, where it is, and what it’s doing.

The challenge for an aggressor would be to position its attack satellite onto an orbit where it could quickly close the distance, without being blatant about it, while preserving enough precious propellant to achieve the final manoeuvre. It would have to locate its target with extreme precision and then ram it, burn it with a laser, spray some kind of chemical onto it or use a robotic appendage to maul it—all technically feasible but extremely challenging. For comparison, it takes hours for a spacecraft to rendezvous with the International Space Station, and that’s with complete transparency and the space station ‘trying’ to be caught.

Ground-based anti-satellite missiles are more straightforward, and the US, Russia, China, and India all have them, but using them would be self-destructive in that the resulting debris would become a hail of de facto bullets whipping around the Earth on unpredictable trajectories, smashing into and wrecking satellites belonging to friend and foe alike.

The minefield of ‘space junk’ left by past missile tests, accidental collisions, and the hulks of dead spacecraft already poses a more serious threat to space security than hostile action does. 

Hostile action, for the foreseeable future, will focus not on the physical bodies of satellites but on their raison d’etre: the transmission of information. Cyberattacks and radio jamming are cheaper, more precise, less escalatory, and do not devastate the environment for centuries to come. Space warfare doesn’t look like Star Wars. It looks like a computer saying ‘no’.

Terms and Conditions for the AI-Cybersecurity Essay Prize Competition

Introduction

The AI-Cybersecurity Essay Prize Competition (the “Competition”) is organized by the European Cyber Conflict Research Incubator (“ECCRI CIC”) in partnership with the Munich Security Conference (“MSC”). It is sponsored by Google (the “Sponsor”). By entering the Competition, participants agree to these Terms and Conditions (T&Cs).

Eligibility

The Competition is open to individuals worldwide who are experts in the fields of cybersecurity and artificial intelligence (“AI”). Participants must ensure that their participation complies with local laws and regulations.

Submission Guidelines

Essays must address the question: “How will Artificial Intelligence change cybersecurity, and what are the implications for Europe? Discuss potential strategies that policymakers can adopt to navigate these changes.”

Submissions must be original, unpublished works between 800-1200 words, excluding footnotes but including hyperlinks for references.

Essays must be submitted by 2 January 2025, 00:00 am CET., through the official submission portal provided by ECCRI CIC.

Only single-authored essays are accepted. Co-authored submissions will not be considered.

Participants are responsible for ensuring their submissions do not infringe upon the intellectual property rights of third parties.

Judging and Awards

Essays will be judged based on insightfulness, relevance, originality, clarity, and evidence by a review board comprising distinguished figures from academia, industry, and government.

The decision of the review board is final and binding in all matters related to the Competition.

Prizes are as follows: 1st Place: €10,000; Runner-Up: €5,000; 3rd Place: €2,500; 4th-5th Places: €1,000 each. The winner will also be invited to attend The Munich Security Conference

Intellectual Property Rights

The author retains ownership of the submitted essay.

By submitting the essay, the author grants ECCRI CIC exclusive, royalty-free rights to use, reproduce, publish, distribute, and display the essay for purposes related to the Competition, including but not limited to educational, promotional, and research-related activities.

The author represents, warrants, and agrees that no essay submitted as part of the essay prize competition violates or infringes upon the rights of any third party, including copyright, trademark, privacy, publicity, or other personal or proprietary rights, breaches, or conflicts with any obligation, such as a confidentiality obligation, or contains libellous, defamatory, or otherwise unlawful material.

The author agrees that the organizers can use your name (or your pseudonym) and an image of you in association with your essay for purposes of publicity, promotion and any other activity related to the exercise of its rights under these Terms.

The organizers may remove any essay-related content from its platforms at any time and without explanation.

The organizers may block contributions from particular email or IP addresses without notice or explanation.

The organizers may enable advertising on its platforms and associated social media accounts, including in connection with the display of your essay. The organizers may also use your Material to promote its products and services.

The organizers may, at its sole discretion, categorise Material, whether by means of ranking according to popularity or by any other criteria.

Data Protection

Personal information collected in connection with the Competition will be processed in accordance with Virtual Routes’ Privacy Policy. Participants agree to the collection, processing, and storage of their personal data for the purposes of the Competition.

Liability and Indemnity

ECCRI CIC, MSC, and the Sponsor will not be liable for any damages arising from participation in the Competition, except where prohibited by law.

Participants agree to indemnify ECCRI CIC, MSC, and the Sponsor against any claims, damages, or losses resulting from a breach of these T&Cs.

General Conditions

ECCRI CIC reserves the right to cancel, suspend, or modify the Competition or these T&Cs if fraud, technical failures, or any other factor beyond ECCRI CIC’s reasonable control impairs the integrity or proper functioning of the Competition, as determined by ECCRI CIC in its sole discretion.

Any attempt by any person to deliberately undermine the legitimate operation of the Competition may be a violation of criminal and civil law, and, should such an attempt be made, ECCRI CIC reserves the right to seek damages from any such person to the fullest extent permitted by law.

Governing Law

These Terms and Conditions are governed by the laws of the United Kingdom, without regard to its conflict of law principles. Any dispute arising out of or in connection with these Terms and Conditions, including any question regarding its existence, validity, or termination, shall be referred to and finally resolved by the courts of the United Kingdom. The participants agree to submit to the exclusive jurisdiction of the courts located in the United Kingdom for the resolution of all disputes arising from or related to these Terms and Conditions or the Competition.